FastRecorder[™] and PacketExtractor[™] for Monitoring IP Networks

Overview

PacketScan™ HD, FastRecorder™ & PacketExtractor™

(2x1/10 GigE, 8x10 GigE, 2x10/25 GigE, 4x10/25 GigE, 2x40 GigE, 2x100 GigE)

PacketScan™ HD, FastRecorder™ & PacketExtractor™ 2 (4 x 1/10 GigE)

PacketScan™ HD - Lunch Box

Lunchbox specs are:

- 64GB RAM
- 500GB SSD for OS
- 4x 3.84TB NVME SSD

What the Software Does?

- The Record feature includes a powerful Hardware Filter that allows user to filter out unwanted traffic, and continuously capture the traffic of interest
- The previously recorded traffic is extracted into single or multiple files and can be analyzed using GL's PacketScan™ and Wireshark® application
- Can create own filters using custom filter option which provides flexibility to check the fields and use the logical AND, OR conditions more efficiently
- Trigger based Start or Stop writing to disk based on the condition is configured based on Capture Rate, Filter Rate, per-port Capture Rate, and Filter Rate
- E-mail alert for specified trigger condition
- Supports Encapsulating Security Payload (ESP) protocol to decrypt ESP packets on both IPv4 and
 IPv6 by providing ESP SAs value
- BERT verification analyzes the received BERT pattern and provides various vital measurements

FastRecorder™ Architecture

Buffer segments stored internally in files:

PacketExtractor™ Architecture

Select Previous Recording → Output file generated from Fast Recorder, once recording is stopped

FastRecorder™ Operations

- FastRecorder[™] application provides
 various options to capture the high-density
 real-time traffic on disk drives and store
 the recorded traffic into a file
- The application can capture the traffic continuously until user stops the recorder or specify the size limit to stop the traffic capture

Hardware Filters

- Hardware filters options are useful to capture traffic based on user interest
- User can select Filter Type as per the test requirements

Advanced Hardware Filter Type

- Up to 10 filters can be defined based on various parameters in the protocol layers
- User can configure the parameters as per test requirements

Predefined Hardware Filter Type

- User can also use Predefined hardware filters. These are custom defined filters
- Application provides a framework to create custom filters as per requirements and group them
- By default, it provides
 configurations for IP addresses
 and protocol combinations.
 Wherein user can configure IP
 address and protocol for the
 traffic of interest

Custom Expression Filter

User can create combination of hardware filters using && and || operators to get the final expression

FastRecorder™ Statistics

FastRecorder™ - Per Port and Aggregated Statistics

Port Statistics	Aggregate	Port-0 (10G)	Port-2 (10G)
Filter Match Frames	106 071 592	9 642 812	96 428 780
Filter Not Match Frames	0	0	0
Total Frames	106 071 592	9 642 812	96 428 780
Filter Match Frames %	100.00	100.00	100.00
Dropped Frames (Due To Port Buffer Ov	0	0	0
Capture Rate(Mbps)	-	937.07	9370.22
Filtered Rate (Mbps)	-	937.07	9370.22
Port Link Status	-	Up	Up
Port Link Down Count	-	0	0
L1/L2 ERROR Counters:-			
L2 Drop Events	0	0	0
CRC	0	0	0
Alignment	0	0	0
Code Voilation	0	0	0
Fragments	0	0	0
Jabbers	0	0	0
Collisions	0	0	0
FRAME-LENGTH Counters:-			
64 Byte	0	0	0
65-127 Byte	0	0	0
128-255 Byte	114 800	10 400	104 400
256-511 Byte	105 324 842	9 574 937	95 749 905
512-1023 Byte	517 050	47 025	470 025
1024-1518 Byte	114 900	10 450	104 450
1519-2047 Byte	0	0	0
2048-4095 Byte	0	0	0
4096-8191 Byte	0	0	0
8192-Max Byte	0	0	0
Undersized Frames	0	0	0
Oversized Frames	0	0	0
VLAN Frames	0	0	0
MPLS Frames	0	0	0
Temperature(C)	-	45.0	48.8
,			
Stats Error Count			

Real time and Historical Graph

Real time display of graph (Time v/s Rate), Capture Rate and Filter Rate

Realtime and Historical Graph (Contd.)

Overall capture and frame rate for Frame/Secs

Graphs - Port Link Down

Port State is changed to Red indicating that the Port is down

Graphs - Zoom IN and Zoom Out

User can click on the required area on the graph and select Zoom IN or Zoom Out as

required

Trigger based Start/Stop Recording

- User can specify the triggers to perform action based on the following conditions
 - CaptureRate (Mbps)
 - FilterRate (Mbps)
 - Port[n].CaptureRate (Mbps)
 - Port[n].FilterRate (Mbps): where n is port number
 - TimeStamp based

Adding Trigger Actions

On the Add Trigger Actions window,

- Enter the Conditions
- Specify the Condition period in seconds
- From the Trigger Type drop-down list select Once or Repeat as required
- Under Action option, check Disk Write option
- From the Action drop-down list select Start Disk Write or Stop Disk Write option as required
- Click on OK

Activated Trigger Actions

 Once the trigger is successful, the trigger status changes from Orange to Green color indicating the recording is started

Activated Trigger Actions (Contd.)

Recording with Default Name

- User can start the capture without specifying Recording Name for which current time is taken as recording name
- Network Adapter Port List display
 SFP Types and negotiated rates

PacketExtractor™

 PacketExtractor[™] configuration settings allows to extract recorded files on the selected HD NIC interface port and required output file format to analyze the results for offline analysis

Analysis of Extracted Traffic using PacketScan™

 The extracted files can be analyzed using PacketScan[™] application (For HDL file format, maximum file size of 10 GB or having less than 75 million frames is supported)

Analysis of Filtered Traffic in Wireshark®

• The extracted files can be analyzed using Wireshark® application. (For PCAP file format, maximum file size of 5 GB or having less than 53 million frames is supported)

Recorded Statistics in PacketExtractor™

PacketExtractor™ - Overall Graph View

 User can view the capture rate and filter rate of the recording

PacketExtractor™ - Port View

 User can view the per port capture rate and filter rate of the recorded file

Packet Extraction from the Recordings with Filter

Specifying End Time for Packet Extraction

Hardware Filter Used while Recording

eCPRI Analysis

View eCPRI Layer Decode Details in PacketScan™

Over UDP

- From the desktop, invoke
 PacketScan™ analyzer
- Goto File → Offline, browse and select any one of the extracted *.hdl file from the D:\Exracted\ folder. Click on Open
- Observe the eCPRI layer decode details as shown

```
DeviceO Frame=6 at 2022-06-09 06:07:36.711206000 OK Len=112
                                                                                                   *** Right
Ethernet Frame Data
    ----- MAC Laver -----
0000 Destination Address
                                               = xFCAA149225C4
0006 Source Address
                                               = x54BEF737CB9A
000C Length/Protocol Type
                                                = x86DD IPv6
    ----- IPv6 Laver -----
000E Protocol Version
                                                = 0110.... (6)
000E Traffic Class
                                                = 0 (....0000 0000....)
000F Flow Label
                                               = 834513 (....1100 10111011 11010001)
0012 Pavload Length
                                               = 58 (x003A)
0014 Next Header
                                                = 00010001 User Datagram Protocol (UDP)
0015 Hop Limit
                                               = 64 (x40)
0016 Source Address
                                                = fe80::64f2:5e84:f1db:502
0026 Destination Address
                                                = fe80 : :589e : b2d5 : 9074 : 2bec
    ----- UDP Laver -----
0036 Source Port
                                               = 64000 (xFA00)
0038 Destination Port
                                                = 64000 (xFA00)
003A Length (Header + Data)
                                               = 58 (x003A)
003C Checksum
                                                = x7F76
    ----- eCPRI Laver -----
IDD3E C
                                                 .....0 eCPRI message is the last one inside the eCPRI PDU
003E eCPRI Protocol Revision
                                                = 0001....(1)
003F eCPRI Message Type
                                                = 00000100 Remote Memory Access
0040 eCPRI Pavload Size
                                               = 28 (x001C)
0042 Remote Memory Access ID
                                               = 17 (x11)
0043 Reg/Resp
                                                = ....0010 Failure
0043 Read/Write
                                                = 0010.... Write No Resp
0044 Element ID
                                               = 8755 (x2233)
0046 Address
                                               = x050403020100
004C Length
                                               = 16 (x0010)
     User Data
                                                = xFFEEDDCCBBAA99887766554433221100
```

View eCPRI Layer Decode Details in PacketScan™ (Contd.)

Over MAC

```
DeviceO Frame=0 at 2019-02-13 11:36:46.000000000 OK Len=64
                                                                                                   *** Right
Ethernet Frame Data
    ----- MAC Laver -----
0000 Destination Address
                                               = x008016000000
0006 Source Address
                                               = x008016884EFF
000C Length/Protocol Type
                                               = xAEFE eCPRI
    ======== eCPRI Laver ========
IOOOE C
                                               = ...... 0 eCPRI message is the last one inside the eCPRI PDU
1000E eCPRI Protocol Revision
                                               = 0001....(1)
000F eCPRI Message Type
                                               = 000000000 IO Data
0010 eCPRI Payload Size
                                               = 20 (x0014)
     eCPRI Pavload
                                               = x123487650F0E0D0C0B0A09080706050403020100
    ======= O-RAN Fronthaul CUS Layer ======== =
     ecpriPoid
0012 BandSector ID
                                               = ..010010 (18)
0012 DU_Port_ID
                                               = 00.....(0)
0013 RU Port ID
                                               = \dots 0100 (4)
0013 CC_ID
                                               = 0011... (3)
     ecpriSegid
                                               = 135 (x87)
0014 Sequence ID
0015 Subsequence ID
                                               = .1100101 (101)
0015 E bit
                                               = 0..... More fragments follow
0016 FilterIndex
                                               = ....1111 Reserved
0016 payloadVersion
                                               = .000....(0)
0016 dataDirection
                                               = 0..... UpLink
0017 frameId
                                               = 14 (\pm 0E)
                                               = 0000....(0)
0018 subframeId
0018 slotId
                                               = 52 (....1101 00....)
0019 startSymbolid
                                               = ..001100 (12)
                                               = 176 (00001011 0000....)
001A sectionId
                                               = ....0.. use the current symbol number
001B symInc
001B rb
                                               = ....1... every other RB used
001B startPrbu
                                               = 521 (.....10 00001001)
001D numPrbu
                                               = 8 (x08)
    udCompHdr
                                               = ....0111 Reserved
001E udCompMeth
001E udIgWidth
                                               = 0000.... I and 0 are each 16 bit wide
      Dump
                                               = x050403020100
```

Encapsulated Security Payload (ESP) Deciphering

Supports Encapsulating Security Payload (ESP) to decrypt ESP packets on both IPv4 and IPv6 by providing ESP SAs value

Thank you

